
項延訓(xùn)
E-mail: yxxiang@ecust.edu.cn
職位:
職稱: 教授,博士生導(dǎo)師;國家杰青(2020)、國家優(yōu)青(2016)。研究生招生專業(yè):博士招生專業(yè):080703動力機械及工程、080202機械電子工程、機械專業(yè)工程博士;碩士招生專業(yè):080706化工過程機械、080202機械電子工程
個人簡介:
2000年畢業(yè)于同濟大學(xué),獲應(yīng)用物理學(xué)士學(xué)位;2003年畢業(yè)于同濟大學(xué),獲聲學(xué)碩士學(xué)位;2011年畢業(yè)于華東理工大學(xué)77779193永利官網(wǎng),獲化工過程機械博士學(xué)位。2005年至今任職于華東理工大學(xué),教授,博士生導(dǎo)師;作為項目負(fù)責(zé)人主持包括國家杰青、優(yōu)青、NSAF聯(lián)合基金重點項目等國家自然科學(xué)基金項目、國家重點研發(fā)計劃項目負(fù)責(zé)人,以及多項省部級項目和企業(yè)合作科研項目。入選第十屆上海青年科技英才(2020年);獲2019年度上海市科技進(jìn)步獎一等獎(第1完成人);獲2017年上海市魏墨盦聲學(xué)獎;獲2015年度上海市自然科學(xué)獎一等獎(第1完成人);獲2014年上海市科技啟明星計劃;發(fā)表SCI論文100余篇,授權(quán)/申請專利20余項。
聯(lián)系方法:
上海市梅隴路130號華東理工大學(xué)77779193永利官網(wǎng)(實驗17樓),郵編:200237。yxxiang@ecust.edu.cn
研究方向
課題組堅持面向科技前沿和國家重大需求,開展材料/結(jié)構(gòu)狀態(tài)多維度跨尺度智能檢測理論、方法研究與裝備研發(fā)。瞄準(zhǔn)嚴(yán)苛工況下重大裝備服役安全保障及壽命預(yù)測難題,建立材料損傷微弱變化的非線性超聲表征與評價理論,發(fā)展與多源異構(gòu)大數(shù)據(jù)、人工智能技術(shù)深度融合的非線性超聲層析成像及智能量化方法,實現(xiàn)裝備全壽命周期健康狀態(tài)精準(zhǔn)評估與安全風(fēng)險智能預(yù)警。研究內(nèi)容涉及超聲學(xué)、材料力學(xué)、信號處理、人工智能等交叉學(xué)科。具體研究方向包括:
(1)材料微損傷非線性超聲檢測
(2)超聲導(dǎo)波檢測及成像
(3)超聲相控陣成像
(4)先進(jìn)傳感材料及高靈敏柔性傳感器件
(5)聲學(xué)超材料與聲場調(diào)控技術(shù)
(6)檢測數(shù)據(jù)挖掘與機器學(xué)習(xí)
承擔(dān)科研項目
[1] 國家重大科研儀器研制項目:“高溫合金損傷演化非線性超聲表征與分析儀器研制”,項目負(fù)責(zé)人,批準(zhǔn)號:12327807,2024-2028;
[2] 國家重點研發(fā)計劃項目:“高溫蠕變無損檢測與損傷狀態(tài)評價技術(shù)研究及應(yīng)用”,項目負(fù)責(zé)人,批準(zhǔn)號:2022YFF0605600,2022.10-2026.03;
[3] 國家自然科學(xué)基金杰青項目:“非線性超聲理論及應(yīng)用”,項目負(fù)責(zé)人,批準(zhǔn)號:12025403, 2021-2025年;
[4] 國家自然科學(xué)基金NSAF國家安全聯(lián)合基金重點項目:“多層復(fù)雜結(jié)構(gòu)狀態(tài)的電磁超聲相控陣檢測方法研究”,項目負(fù)責(zé)人,批準(zhǔn)號:U1930202,2020-2023年;
[5] 國家重點研發(fā)計劃課題:“嚴(yán)苛環(huán)境下安全性能衰退在線感知和失效預(yù)警”,課題負(fù)責(zé)人,批準(zhǔn)號:2018YFC0808806,2018-2021;
[6] 國家自然科學(xué)基金優(yōu)青項目:“非線性超聲導(dǎo)波”,項目負(fù)責(zé)人,批準(zhǔn)號:11622430, 2017-2019年;
[7] 國家自然科學(xué)基金面上項目:“基于非線性超聲導(dǎo)波混頻的結(jié)構(gòu)塑性損傷定位及表征方法”,項目負(fù)責(zé)人,批準(zhǔn)號:11774090, 2018-2021年;
[8] 國家自然科學(xué)基金面上項目:“微細(xì)觀尺度下材料蠕變行為的非線性蘭姆波評價理論與表征方法”,項目負(fù)責(zé)人,批準(zhǔn)號:11474093,2015-2018年;
[9] 裝備預(yù)研教育部聯(lián)合基金項目:“極端條件服役結(jié)構(gòu)健康監(jiān)測方法及系統(tǒng)”,項目負(fù)責(zé)人,2018-2019年。
發(fā)表論文
[1]. Zhiyuan Zhao, Lishuai Liu*, Wen Liu, Da Teng, Yanxun Xiang*, Fu-Zhen Xuan. Discretized tensor-based model of total focusing method A sparse regularization approach for enhanced ultrasonic phased array imaging. NDT&E International, 2024, 141: 102987.
[2]. Haiming Xu, Lishuai Liu*, Xuan Li, Yanxun Xiang*, Fu-Zhen Xuan. Wavefield imaging of nonlinear ultrasonic Lamb waves for visualizing fatigue micro-cracks. Ultrasonics, 2024, DOI: https://doi.org/10.1016/j.ultras.2023.107214.
[3]. Xuan Li, Lishuai Liu*, Haiming Xu, Zheng Hu, Yanxun Xiang*, Fu-Zhen Xuan. Lamb wave phased array imaging based on phase-amplitude compounding algorithm. Mechanical Systems and Signal Processing, 2023, 205: 110882.
[4]. Xunlin Qiu, Yuji Liu, Chengyuan Wu, Yanxun Xiang*, Fu-Zhen Xuan, and Reimund Gerhard. More efficient charging of ferroelectrets via tuning of the Paschen breakdown. Applied Physics Letters, 2023, 122: 092902.
[5]. Lishuai Liu, Wen Liu, Da Teng, Yanxun Xiang*, and Fu-Zhen Xuan. A multiscale residual U-net architecture for super-resolution ultrasonic phased array imaging from full matrix capture data. J. Acoust. Soc. Am. 2023, 154 (4): 2044-2054.
[6]. Yazhu Bai, Ailing Song*, Chaoyu Sun, Yanxun Xiang*, and Fu-Zhen Xuan. Broadband sound focusing with tunable focus based on reconfigurable acoustic coding metagrating. Applied Physics Letters, 2023, 122: 261705.
[7]. Peng Wu, Lishuai Liu*, Yanxun Xiang*, Fu-Zhen Xuan. Data-driven time-frequency analysis of nonlinear Lamb waves for characterization of grain size distribution. Applied Acoustics, 2023, 207: 109367.
[8]. Da Teng, Lishuai Liu, Yanxun Xiang*, Fu-Zhen Xuan. An Optimized Total Focusing Method based on Delay-Multiply-and-Sum for Nondestructive Testing. Ultrasonics, 2023, 128: 106881.
[9]. Haiming Xu , Lishuai Liu*, Jichao Xu , Yanxun Xiang* and Fu-Zhen Xuan. Deep learning enables nonlinear Lamb waves for precise location of fatigue crack. Structural Health Monitoring, 2023, DOI: 10.1177/14759217231167076.
[10]. Wenfa Zhu, Yanxun Xiang*, Haiyan Zhang*, Mengke Zhang, Guopeng Fan and Hui Zhang. Super-resolution ultrasonic Lamb wave imaging based on sign coherence factor and total focusing method. Mechanical Systems and Signal Processing, 2023,
[11]. Di Sun, Wujun Zhu*, Xunlin Qiu, Lishuai Liu, Yanxun Xiang*, Fu-Zhen Xuan. Nonlinear Ultrasonic Detection of Closed Cracks in Metal Plates with Phase-Velocity Mismatching.?NDT&E International, 2023, 135: 102788.
[12]. Chaoyu Sun. Topological Fano resonance of symmetric Lamb wave induced by antisymmetric trapped mode. AIP Advances, 2023,
[13]. Ailing Song, Chaoyu Sun, Yanxun Xiang*, Fu-Zhen Xuan. Simple acoustic metagrating for perfect two- and three-beam splitting. Frontiers in Materials, 2023, DOI 10.3389/fmats.2023.1127233.
[14]. Xinfeng Guo, Wujun Zhu , Xunlin Qiu and Yanxun Xiang*. A Lorentz Force EMAT Design with Racetrack Coil and Periodic Permanent Magnets for Selective Enhancement of Ultrasonic Lamb Wave Generation. Sensors, 2023, 23: 96.
[15]. Ning Pei, Yanxun Xiang*. Torsional damage analysis for pre-delaminated carbon glass fiber-reinforced hybrid laminates based on acoustic emission. Applied Acoustics, 2023, 202: 109181.
[16]. Taotao Ding, Ailing Song*, Chaoyu Sun, Yanxun Xiang*, and Fu-Zhen Xuan. Mode conversion of Lamb waves in a composite phononic crystal plate numerical analysis and experimental validation. Journal of Applied Physics, 2022.
[17]. WenFa Zhu, Yanxun Xiang*, HaiYan Zhang, Yao Cheng, GuoPeng Fan, Hui Zhang. Research on ultrasonic sparse DC-TFM imaging method of rail defects. Measurement, 2022, 200: 111690.
[18]. Xunlin Qiu*, Yuqing Bian, Jiawen Liu, Yanxun Xiang*, Taotao Ding, Wujun Zhu, Fu-Zhen Xuan. Ferroelectrets: Recent developments. IET Nanodielectrics, 2022, DOI: 10.1049/nde2.12036.
[19]. Ailing Song, Chaoyu Sun, Yazhu Bai, Yanxun Xiang*, Fu-Zhen Xuan. Reconfigurable acoustic metagrating for multiple anomalous wavefront manipulation functionalities. Physics Letters A, 2022, 453: 128477.
[20]. Lishuai Liu, Peng Wu, Yanxun Xiang*, and Fu-Zhen Xuan. Autonomous characterization of grain size distribution using nonlinear Lamb waves based on deep learning. J. Acoust. Soc. Am. 2022, 152 (3): 1913-1921.
[21]. Lishuai Liu, Di Sun, Yanxun Xiang*, and Fu-Zhen Xuan. Deep learning-based solvability of underdetermined inverse problems in nonlinear ultrasonic characterization of micro damages. Journal of Applied Physics, 2022, 132, 144901.
[22]. Ben Li, Hongyan Zhou, Yanxun Xiang*, Wujun Zhu. Evaluation of preparation quality and wear state of TC4-based self-lubricating composite based on Lamb wave. Materials Today Communications, 2022, 31: 103722.
[23]. Taotao Ding, Qiang Wan, Yanxun Xiang*, Xunlin Qiu*, Mingxi Deng and Fu-Zhen Xuan. Selectable single-mode guided waves for multi-type damages localization of plate-like structures using film comb transducers. Nondestructive Testing and Evaluation, 2022, https://doi.org/10.1080/10589759.2022.2071890.
[24]. Han Chen, Mingxi Deng*, Guangjian Gao, Caibin Xu, Ning Hu, Yanxun Xiang*. Characterization of interfacial property of a two-layered plate using a nonlinear low-frequency Lamb wave approach. Ultrasonics, 2022, 124: 106741.
[25]. Lishuai Liu, Chenjun Guo, Yanxun Xiang*, Yanxin Tu, Hongwei Mei, Liming Wang and Fu-Zhen Xuan. Health Monitoring of RTV Silicone Rubber Coating on Insulators Based on Multimode Features of Active Infrared Thermography. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 4502609.
[26]. Chaoyu Sun, Ailing Song*, Yanxun Xiang*, Fu-Zhen Xuan. Multifunctional phononic crystal filter for generating a nonlinear ultrasonic guided wave. Journal of Physics D-Applied Physics, 2022, 55(26): 265104.
[27]. Ailing Song, Chaoyu Sun, Yanxun Xiang*, and Fu-Zhen Xuan. Switchable acoustic metagrating for three-channel retroreflection and carpet cloaking. Applied Physics Express, 2022, 15: 024002.
[28]. Jianying Tang, Wujun Zhu, Xunlin Qiu, Ailing Song*, Yanxun Xiang*, Fu-Zhen Xuan. Non-contact phase coded excitation of ultrasonic Lamb wave for blind hole inspection. Ultrasonics, 2022, 119: 106606.
[29]. Lishuai Liu, Chenjun Guo, Yanxun Xiang*, Yanxin Tu, Liming Wang, and Fu-Zhen Xuan. Photothermal Radar Shearography A Novel Transient-Based Speckle Pattern Interferometry for Depth-Tomographic Inspection. IEEE Transactions on Industrial Informatics, 2022, 18(7): 4352.
[30]. Lishuai Liu, Chenjun Guo, Yanxun Xiang*, Yanxin Tu, Liming Wang, and Fu-Zhen Xuan. A Semisupervised Learning Framework for Recognition and Classification of Defects in Transient Thermography Detection. IEEE Transactions on Industrial Informatics, 2021, DOI 10.1109/TII.2021.3101309.
[31]. Jichao Xu, Wujun Zhu, Yanxun Xiang*, Yang Gao and Xunlin Qiu. Localization and Imaging of Micro-Cracks Using Nonlinear Lamb Waves with Imperfect Group-Velocity Matching. Applied Science, 2021, 11: 8609.
[32]. Wujun Zhu, Zisheng Xu, Yanxun Xiang*, Changjun Liu*, Mingxi Deng, Xunlin Qiu, Di Sun, Fuzhen Xuan. Nonlinear ultrasonic detection of partially closed cracks in metal plates using static component of lamb waves. NDT&E Int. 2021, 124: 102538.
[33]. Taotao Ding, Wujun Zhu*, Congyun Ma, Yanxun Xiang*, Mingxi Deng, Fu?zhen Xuan. Influence of cyclic?loading induced fatigue micro?crack growth on generation of nonlinear ultrasonic Lamb waves. Journal of Nondestructive Evaluation, 2021, 40: 62, https://doi.org/10.1007/s10921-021-00792-8.
[34]. Han Chen, Mingxi Deng*, Guangjian Gao, Ning Hu, Yanxun Xiang*. Modeling and simulation of static component generation of Lamb wave propagation in a layered plate. Ultrasonics, 2021, 116: 106473.
[35].孫迪, 朱武軍, 項延訓(xùn)*, 軒福貞. 微裂紋的非線性超聲檢測研究進(jìn)展. 科學(xué)通報, 2021, doi: 10.1360/TB-2021-0798.
[36]. 宋愛玲, 孫超彧, 陳天寧, 項延訓(xùn), 軒福貞. 聲學(xué)超表面的非對稱聲分束特性研究. 人工晶體學(xué)報. 2021, 50(7): 1363-1371.
[37]. 銀信, 朱武軍, 孫茂循, 項延訓(xùn), 鄧明晰, 軒福貞. 裂紋尖端塑性區(qū)非線性超聲混頻定位表征. 聲學(xué)學(xué)報, 2021, 46(3): 463-470.