宮建國
E-mail: jggong@ecust.edu.cn
職稱:副教授、博士生導(dǎo)師、碩士生導(dǎo)師
招生專業(yè):
(1) 博士:動力工程及工程熱物理;
(2) 學(xué)碩:動力工程及工程熱物理、機械工程;(3) 專碩:能源動力、機械
本研究小組隸屬于涂善東院士、軒福貞校長等領(lǐng)導(dǎo)的過程設(shè)備科學(xué)與工程研究室(PESE)。
帶你科研生活兩不誤,不負(fù)青春好時光。歡迎對相關(guān)研究方向感興趣的同學(xué)加入!
主要教育與工作經(jīng)歷:
2009年6月本科畢業(yè)于中國石油大學(xué)(華東);
2014年6月博士畢業(yè)于浙江大學(xué);
2014年7月進(jìn)入華東理工大學(xué)動力工程及工程熱物理博士后流動站;
2016年12月留校工作至今。
學(xué)術(shù)簡介:
副教授、博士生導(dǎo)師、碩士生導(dǎo)師。ASME VIII卷中國國際工作組(CIWG)理事(2021-)、中國機械工程學(xué)會壓力容器分會理事(2021-)、中國材料研究學(xué)會疲勞分會理事(2024-)、華東理工大學(xué)-上海核工院核能裝備壽命管理技術(shù)聯(lián)合研究中心主任助理(2021-)、中國機械工程學(xué)會高級會員(2021-),入選華東理工大學(xué)青年英才培育計劃(2019)。
主要從事能源與動力領(lǐng)域機械結(jié)構(gòu)完整性研究。目前,主持國家自然科學(xué)基金(面上、青年)、國家重點研發(fā)計劃(子課題)、國家重大科技專項(外協(xié))等課題研究。發(fā)表國內(nèi)外期刊論文75篇:其中,以第一/通訊作者在International Journal of Fatigue、Engineering Fracture Mechanics、Fatigue & Fracture of Engineering Materials & Structures、ASME Journal of Pressure Vessel Technology、機械工程學(xué)報等國內(nèi)外期刊發(fā)表論文45篇(SCI收錄論文29篇)。出版專著1部(基于損傷模式的壓力容器設(shè)計原理,科學(xué)出版社)。申請PCT國際/美國/中國發(fā)明專利18項(授權(quán)14項),授權(quán)軟件著作權(quán)18項。獲中國機械工業(yè)聯(lián)合會科技進(jìn)步二等獎1項(3/10)、中國石油和化工聯(lián)合會科技進(jìn)步一等獎1項(7/15)等獎勵。International Journal of Fatigue、Engineering Fracture Mechanics、ASME Journal of Pressure Vessel Technology等18個SCI期刊審稿人。
指導(dǎo)的研究生獲得中國壓力容器學(xué)會青年論文競賽三等獎(2017,2人次)、全國反應(yīng)堆結(jié)構(gòu)力學(xué)會議優(yōu)秀論文獎(2018,2022)等獎項。
聯(lián)系方式:
地址:上海市徐匯區(qū)梅隴路130號華東理工大學(xué)實驗17樓203
郵箱:jggong@ecust.edu.cn
電話:021-64251623
郵編:200237
研究方向
(1)先進(jìn)核能/氫能等能源與動力領(lǐng)域機械結(jié)構(gòu)完整性
面向新一代核能、氫能等國家戰(zhàn)略領(lǐng)域,開展關(guān)鍵部件的結(jié)構(gòu)完整性評估技術(shù)研究,保障重大裝備的長周期安全服役。
(2)機器學(xué)習(xí)/深度學(xué)習(xí)及壽命預(yù)測方法
基于機器學(xué)習(xí)、深度學(xué)習(xí)等先進(jìn)算法,考慮高溫結(jié)構(gòu)失效的物理機制,建立考慮物理失效機制的高溫結(jié)構(gòu)壽命預(yù)測方法。
(3)數(shù)據(jù)驅(qū)動的關(guān)鍵部件可靠性評估
針對深空探測等國防、軍工領(lǐng)域需求,考慮多源參數(shù)不確定性,建立復(fù)雜高溫失效模式下的高溫裝備可靠性評估技術(shù)。
(4)高溫部件強度分析與安全評價程序/軟件開發(fā)
基于Python、Matlab等程序/計算開發(fā)語言,結(jié)合建立的結(jié)構(gòu)完整性評價方法,開發(fā)高溫部件強度分析評價軟件。
承擔(dān)科研項目
[13] 上海核工程研究設(shè)計院股份有限公司,2023-2025,在研,主持
[12] 中國原子能科學(xué)研究院,2023-2024,在研,主持
[11] 中國原子能科學(xué)研究院,2022-2023,在研,主持
[10] 國家自然科學(xué)基金面上項目,52175139,2022/01-2025/12,在研,主持
[9] 國家自然科學(xué)基金青年基金項目,51605165,2017/01-2019/12,結(jié)題,主持
[8] 國家重點研發(fā)計劃項目課題子任務(wù),2016YFC0801905-03,2016/06-2020/06,結(jié)題,主持
[7] 中國核電工程有限公司,2021-2023,在研,主持
[6] 國家重大科技專項/上海核工程研究設(shè)計院,2019/03-2020/02,結(jié)題,主持
[5] 國家重大科技專項/上海核工程研究設(shè)計院,2020/03-2020/10,結(jié)題,主持
[4] 中央基本科研業(yè)務(wù)費,2017/03-2018/12,結(jié)題,主持
[3] 中國博士后基金,2015-2016,結(jié)題,主持
[2] 東方電氣股份有限公司,2020/03-2021/12,結(jié)題,主持
[1] 東方重型機器(廣州)有限公司,2020/03-2024/12,在研,主持
獲獎成果
[6] 全國反應(yīng)堆結(jié)構(gòu)力學(xué)會議優(yōu)秀論文獎,2022
[5] 中國石油和化工聯(lián)合會科技進(jìn)步一等獎(7/15),2021
[4] 中國機械工業(yè)科技進(jìn)步二等獎(3/10),2019
[3] 華東理工大學(xué)青年英才培育計劃,2019
[2] 全國反應(yīng)堆結(jié)構(gòu)力學(xué)會議優(yōu)秀論文獎,2018
[1] 中國壓力容器學(xué)會青年論文競賽三等獎,2017
代表性著作
(1)專著:
[1] 軒福貞,宮建國. 基于損傷模式的壓力容器設(shè)計原理. 北京:科學(xué)出版社,2020.
(2)期刊論文(部分)(*代表通訊作者):
[58] Fu JH, Zhu KP, Gong JG*, Gao FH, Xuan FZ*. Correlation between reliability and safety factor based methods in characterizing uncertainty of creep rupture properties. International Journal of Pressure Vessels and Piping, 2023, 206: 105068.
[57] Liu F, Yang J, Weng S, Xuan FZ*, Gong JG*. A machine learning method for buckling design of internally pressurized torispherical heads considering geometric imperfection. Thin-Walled Structures, 2023, 189: 110908.
[56] Guo SS, Gong JG*, Zhao P*, Niu TY, Xuan FZ. Creep damage in 9-12% Cr steel notched components: microstructural evolution and stress state dependence. International Journal of Pressure Vessels and Piping, 2023, 204: 104977.
[55] Lin GP, Gong JG*, Xuan FZ*. A whole-section failure criterion for creep life evaluation of components at elevated temperatures. Engineering Fracture Mechanics, 2023, 285: 109301.
[54] Wang HJ, Li Bo*, Gong JG, Xuan FZ*. Machine learning-based fatigue life prediction of metal materials: Perspectives of physics-informed and data-driven hybrid methods. Engineering Fracture Mechanics, 2023, 284: 109242.
[53] 牛田野, 高永建, 陶賢超, 趙鵬, 宮建國*, 軒福貞. 核級SA-508 Gr.3 Cl.1材料拉伸與壓縮蠕變行為的比較研究. 機械工程學(xué)報, 2023, 59(4): 96-104.
[52] Guo SS, Gong JG*, Zhao P, Xuan FZ*. A probabilistic framework of creep life assessment of structural components at elevated temperature. Engineering Fracture Mechanics, 2023, 281: 109162.
[51] Liu F, Niu TY, Gong JG, Chen HF*, Xuan FZ*. Experimental and numerical investigations on buckling behaviours of axially compressed cylindrical-conical-cylindrical shells at elevated temperature. Thin-Walled Structures, 2023, 184: 110549.
[50] 陶賢超,高永建,趙鵬,胡靖東,宮建國*,軒福貞. 反應(yīng)堆壓力容器材料壓縮蠕變性能及變形機制研究. 壓力容器,2022, 39(7): 1-6.
[49] 莫亞飛,龔程,高付海,宮建國*,軒福貞. 核電高溫設(shè)備蠕變強度評價方法對比研究. 壓力容器,2022, 39(7): 35-42.
[48] Wang N, Yu H, Zhao P*, Zhang JM, Gong JG*, Xuan FZ. Cyclic deformation response of austenitic Ni-based alloy: Mechanical behaviour, internal stress evolution and microstructural feature. Materials Science and Engineering A, 2022, 850: 143522.
[47] 高付海,宮建國*,軒福貞. 基于非彈性分析方法的核電高溫結(jié)構(gòu)完整性評價框架及應(yīng)用研究. 壓力容器, 2022, 39(4): 33-41.
[46] Liu Z, Gong JG*, Zhao P, Zhang XC, Xuan FZ*. Creep-fatigue interaction and damage behavior in 9-12%Cr steel under stress-controlled cycling at elevated temperature: Effects of holding time and loading rate. International Journal of Fatigue, 2022, 156: 106684.
[45] Zhang XC, Gong JG*, Xuan FZ*. A Physics-Informed Neural Network for Creep-Fatigue Life Prediction of Components at Elevated Temperatures. Engineering Fracture Mechanics, 2021, 258: 108130.
[44] 張效成,宮建國,軒福貞*. 基于機器學(xué)習(xí)的蠕變斷裂壽命預(yù)測方法. 壓力容器, 2021, 38(7): 48-57.
[43] Gong JG*, Guo SS, Gao FH, Niu TY, Xuan FZ. Creep damage and interaction behavior of neighboring notches for components at elevated temperature. Engineering Fracture Mechanics, 2021, 256: 107996.
[42] Zhao P, Lu TY, Gong JG*, Xuan FZ, Berto F. A strain energy density based life prediction model for notched components in the low cycle fatigue regime. International Journal of Pressure Vessels and Piping, 2021, 193: 104458.
[41] Gong C, Gong JG*, Xuan FZ*. A time-dependent stress and strain estimation method for notched components under combined primary and secondary loads. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(9): 2307-2322.
[40] Liu F, Gong JG, Chen HF*, Xuan FZ*. A Direct Approach to Progressive Buckling Design Considering Ratcheting Deformation. Thin-Walled Structures, 2021, 163: 107656.
[39] Zhang XC, Gong JG, Gao FH, Xuan FZ*. An improved creep-fatigue life model involving the cyclic softening/hardening and stress relaxation effect. ASME Journal of Pressure Vessel Technology, 2021, 143(4): 041502.
[38] Zhang XC, Gong JG*, Xuan FZ*. A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions. International Journal of Fatigue, 2021, 148: 106236.
[37] Gong C, Niu TY, Gong JG*, Xuan FZ*. A time-dependent stress and strain estimation method for notched components under the displacement-controlled condition. Engineering Fracture Mechanics, 2021, 242: 107447.
[36] Niu TY, Zhao P, Zhu G, Gong JG*, Xuan FZ*. Stress state dependent creep damage behavior of 9-12% Cr steel notched components. Materials Science and Engineering A, 2021, 804:140762.
[35] 陳鼎,宮建國*,軒福貞. 電纜聚氯乙烯絕緣層熱變形過程的數(shù)值分析與評價. 機械強度, 2020, 42(5): 1177-1183.
[34] Zhao P, Lu TY, Gong JG*, Xuan FZ. A modified stress field intensity approach for fatigue life prediction of components. Materials and Design, 2020, 190: 108537.
[33] Niu TY, Gong C, Gong JG*, Xuan FZ*, Chen HF. Assessment on strain-based and stress-based design strategies for components at elevated temperatures: a comparative study. ASME Journal of Pressure Vessel Technology, 2020, 142(4): 041701.
[32] Niu TY, Gong C, Gong JG*, Xuan FZ*. Creep failure behavior of notched structure in the simulated steam turbine rotor: experimental and damage analysis. ASME Journal of Pressure Vessel Technology, 2020, 142(6): 061502.
[31] Gong C, Fu-Hai Gao, Gong JG*, Xuan FZ*. Assessment on stress estimation method for creep evaluation of components at elevated temperature within elastic analysis routine. ASME Journal of Pressure Vessel Technology, 2021, 143(1): 011503.
[30] 龔程, 宮建國, 高付海, 軒福貞. 基于應(yīng)力參量的高溫結(jié)構(gòu)蠕變設(shè)計準(zhǔn)則對比及案例分析.壓力容器, 2019, 36(4): 15-21.
[29] 陳鼎,宮建國*,軒福貞. 電纜聚氯乙烯絕緣層熱變形性能評價的影響因素研究. 絕緣材料, 2019, 52(4): 57-60.
[28] 周忠強,惠虎,宮建國*,張亞林,許葉龍,李長青. 含非連續(xù)加強圈復(fù)土臥式容器的屈曲安全評價及影響因素分析. 壓力容器,2019, 36(3): 44-49.
[27] 劉芳,宮建國*,黑寶平,高付海,軒福貞. 核電部件屈曲設(shè)計方法的對比分析與案例研究. 壓力容器,2019, 36(6): 18-26.
[26] 惠虎,咸蘋蘋,宮建國*. 基于直接法的多晶硅還原爐底盤結(jié)構(gòu)安全性評估. 壓力容器,2019, 36(7): 28-33.
[25] 劉兆陽, 胡靖東, 宮建國, 曹健*,高付海,軒福貞. 示范快堆堆芯熔融物收集裝置的安全分析. 原子能科學(xué)技術(shù), 2019, 8: 1-6.
[24] Liu F, Gong JG, Gao FH, Xuan FZ*. A Creep Buckling Design Method of Elliptical Heads Based on the External Pressure Chart. ASME Journal of Pressure Vessel Technology, 2019, 141(3): 031203.
[23] Gong JG, Gong C, Xuan FZ*, Chen HF. Notch effect on structural strength of components at elevated temperature under creep, fatigue and creep-fatigue loading conditions: phenomenon and mechanism. ASME Journal of Pressure Vessel Technology, 2019, 141: 050801.
[22] 夏齊煒,宮建國,軒福貞*. 耐熱鋼CrMoCoV表面裂紋疲勞擴(kuò)展試驗及考慮閉合效應(yīng)的數(shù)值分析研究. 壓力容器, 2018, 35(2): 1-7.
[21] 宮建國,陳浩峰,軒福貞. 線性匹配方法(LMM)及其用于高溫部件安定與棘輪分析的案例研究. 壓力容器, 2018, 35(3): 19-25.
[20] 柏慧,趙景玉,宮建國*,軒福貞,惠虎. 熱輻射作用對加氫反應(yīng)器熱箱部位溫度及應(yīng)力分布的影響分析. 壓力容器, 2018, 35(4): 25-30.
[19] Wang RZ, Wang J, Gong JG, Zhang XC, Tu ST, Zhang CC. Creep-Fatigue Behaviors and Life Assessments in Two Nickel-Based Superalloys. Journal of Pressure Vessel Technology, 2018, 140(3): 031405.
[18] Lu YQ, Hui H, Gong JG. Influence of Welding Strength Matching Coefficient and Cold Stretching on Welding Residual Stress in Austenitic Stainless Steel. Journal of Materials Engineering and Performance, 2018, 27 (6), SI: 3131-3143.
[17] Wang RZ, Zhu XM, Zhang XC*, Tu ST*, Gong JG, Zhang CC. A generalized strain energy density exhaustion model allowing for compressive hold effect. International Journal of Fatigue, 2017, 104, 61-71.
[16] Ye S, Zhang XC*, Gong JG, Tu ST*, Zhang CC. Multi‐scale fatigue crack propagation in 304 stainless steel: experiments and modelling. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40: 1928–1941.
[15] Wang RZ, Zhang XC*, Gong JG, Zhu XM, Tu ST*, Zhang CC. Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650° C based on cycle-by-cycle concept. International Journal of Fatigue, 2017, 97: 114-123.
[14] Ye S, Gong JG, Tu ST*, Zhang XC*, Zhang CC. Local strain accumulation in fatigue crack propagation process of Ti‐6Al‐4V alloy. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(5): 836-849.
[13] Ye S, Gong JG, Zhang XC*, Tu ST*, Zhang CC. Effect of Stress Ratio on the Fatigue Crack Propagation Behavior of the Nickel-based GH4169 Alloy. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 809-821.
[12] 張效成,宮建國,軒福貞*. 蠕變斷裂壽命外推方法及數(shù)據(jù)分散性處理研究. 壓力容器, 2017, 34(7): 11-18.
[11] 古晉斌,宮建國*,惠虎. 基于極限載荷法的矩形接管結(jié)構(gòu)設(shè)計及參數(shù)化分析. 壓力容器, 2017, 34(4): 19-25.
[10] Gong JG*, Zhou ZQ, Xuan FZ. Buckling strength of cylindrical steel tanks under measured differential settlement: Harmonic components needed for consideration and its effect. Thin-Walled Structures, 2017, 119: 345-355.
[9] Gong JG, Xia QW, Xuan FZ*, Evaluation of simplified creep design methods based on the case analysis of tee joint at elevated temperature, Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139(4): 041412.
[8] Gong JG, Niu TY, Chen HF*, Xuan FZ*. Shakedown analysis of pressure pipeline with an oblique nozzle at elevated temperatures using the linear matching method. International Journal of Pressure Vessels and Piping, 2018, 159: 55-66.
[7] Gong JG, Liu F, Xuan FZ*. On fatigue design curves for 2.25Cr-1Mo-V steel reactors at elevated temperature in Code Case 2605. Journal of Pressure Vessel Technology, Transactions of the ASME, 2018, 140(2): 021101.
[6] Gong JG, Yu L, Wang F, Xuan FZ*. Effect of welding residual stress on the buckling behavior of storage tanks subjected to harmonic settlement. Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139(1): 011401.
[5] Gong JG, Xuan FZ*. Notch behavior of components under the stress controlled creep-fatigue condition: Weakening or strengthening?. Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139(1): 011407.
[4] 宮建國,溫建鋒,軒福貞*. 蠕變-疲勞載荷下高溫結(jié)構(gòu)的缺口效應(yīng)研究進(jìn)展. 機械工程學(xué)報, 2015, 51(24): 24-40.
[3] Gong JG, Tao J, Zhao J, Zeng S, Jin T*. Buckling analysis of open top tanks subjected to harmonic settlement. Thin-Walled Structures, 2013, 63: 37-43.
[2] Gong JG, Tao J, Zhao J, Zeng S, Jin T*. Effect of top stiffening rings of open top tanks on critical harmonic settlement. Thin-Walled Structures, 2013, 65: 62-71.
[1] Gong JG, Cui WS, Zeng S, Jin T*. Buckling analysis of large scale oil tanks with a conical roof subjected to harmonic settlement. Thin-Walled Structures, 2012, 52: 143-148.