賈云飛
E-mail:yfjia@ecust.edu.cn
職位:科研院副院長(zhǎng)
職稱:教授 博士生導(dǎo)師
個(gè)人簡(jiǎn)介:
2014年11月獲得華東理工大學(xué)機(jī)械設(shè)計(jì)及理論博士學(xué)位。2013.8~2014.8赴美國(guó)肯塔基大學(xué)聯(lián)合培養(yǎng)。主持國(guó)家自然科學(xué)基金優(yōu)青、面上、青年基金,中國(guó)博士后基金等科研項(xiàng)目,并入選上海市啟明星計(jì)劃、揚(yáng)帆計(jì)劃、上海市晨光計(jì)劃等。
兼任中國(guó)機(jī)械工程學(xué)會(huì)材料分會(huì)青工委副主任委員,上海市現(xiàn)代設(shè)計(jì)法研究會(huì)副理事長(zhǎng),上海市高端裝備可靠性技術(shù)協(xié)同創(chuàng)新中心副主任,中國(guó)材料學(xué)會(huì)疲勞分會(huì)理事,中國(guó)機(jī)械工程學(xué)會(huì)表面工程分會(huì)表面改性學(xué)組特聘專家,中國(guó)機(jī)械工程學(xué)會(huì)摩擦學(xué)分會(huì)青工委委員,美國(guó)TMS(礦物,金屬和材料)學(xué)會(huì)納米力學(xué)材料行為委員會(huì)和材料力學(xué)行為委員會(huì)委員(Committee member)。擔(dān)任Chinese Journal of Mechanical Engineering,機(jī)械強(qiáng)度 等期刊編委、青年編委。
聯(lián)系方式:
上海市梅隴路130號(hào) 華東理工大學(xué)
電話:021-64253776
研究方向
主要研究領(lǐng)域包括:
(1)機(jī)械結(jié)構(gòu)仿生強(qiáng)度學(xué)
面向航空航天、電力等高端裝備結(jié)構(gòu)/材料的仿生設(shè)計(jì)、制造調(diào)控、力學(xué)性能評(píng)定。
(2)航空發(fā)動(dòng)機(jī)葉片抗沖蝕
面向航空發(fā)動(dòng)機(jī)3D打印材料及涂層的抗沖蝕測(cè)試、沖蝕模型建立及沖蝕性能預(yù)測(cè)。
(3)基于機(jī)器學(xué)習(xí)的結(jié)構(gòu)設(shè)計(jì)
面向高端裝備結(jié)構(gòu)強(qiáng)度、韌性、疲勞壽命等綜合優(yōu)化目標(biāo)的微區(qū)組織參數(shù)優(yōu)化設(shè)計(jì)。
招生專業(yè):(1)博士:機(jī)械工程、動(dòng)力工程及工程熱物理;(2)學(xué)碩:機(jī)械工程、動(dòng)力工程及工程熱物理;(3)專碩:機(jī)械工程、動(dòng)力工程
承擔(dān)科研項(xiàng)目
國(guó)家自然科學(xué)基金優(yōu)秀青年科學(xué)基金,2023.01-2025.12,主持;
國(guó)家自然科學(xué)基金創(chuàng)新研究群體項(xiàng)目,2024.01-2028.12,群體骨干;
上海市自然科學(xué)基金,2023.04-2026.03,主持;
中航商發(fā)預(yù)研項(xiàng)目,2020.12-2023.06,主持;
國(guó)家自然科學(xué)基金面上項(xiàng)目, 2020.01-2023.12, 主持;
上海市青年科技啟明星計(jì)劃, 2020.06-2023.05, 主持;
JW科技委創(chuàng)新特區(qū)項(xiàng)目,2019.10-2020.9,主持;
國(guó)家自然科學(xué)基金青年基金,2017.01-2019.12,主持;
上海市青年科技英才揚(yáng)帆計(jì)劃,2016.06-2019.05,主持;
上海市晨光計(jì)劃,2017.02-2019.12,主持;
中國(guó)博士后科學(xué)基金,2015.08-2016.10,主持;
國(guó)家重點(diǎn)研發(fā)計(jì)劃, 2018.07-2021.06,學(xué)術(shù)骨干;
國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目, 2019.01-2023.12,學(xué)術(shù)骨干。
獲獎(jiǎng)成果
2024年獲校長(zhǎng)獎(jiǎng)特等獎(jiǎng)
2024年指導(dǎo)研究生獲材料與結(jié)構(gòu)強(qiáng)度青年論壇報(bào)告特等獎(jiǎng)
2023年獲中國(guó)發(fā)明協(xié)會(huì)創(chuàng)新獎(jiǎng)二等獎(jiǎng)
2021年獲ISSI-Best Student Paper Award一等獎(jiǎng)
2019年獲Journal of Manufacturing Processes杰出審稿貢獻(xiàn)獎(jiǎng)
2018年獲華東理工大學(xué)“青年英才培育計(jì)劃”
2017年獲上海市科技進(jìn)步一等獎(jiǎng)(5/14)
2017年獲華東理工大學(xué)優(yōu)秀博士學(xué)位論文獎(jiǎng)
2014年上海市授予“上海市優(yōu)秀(博士)畢業(yè)生”
2014年華東理工大學(xué)授予“華東理工大學(xué)榮譽(yù)畢業(yè)生”
2013年獲國(guó)家留學(xué)基金委“國(guó)家建設(shè)高水平大學(xué)公派研究生項(xiàng)目全額獎(jiǎng)學(xué)金”
2013年入選華東理工大學(xué)“優(yōu)秀博士學(xué)位論文培育計(jì)劃”
2012年獲博士研究生“國(guó)家獎(jiǎng)學(xué)金”
2012年獲華東理工大學(xué)第十六屆“論文年會(huì)一等獎(jiǎng)”
代表性著作
[57]Y. Zhang, C.-Y. He, X. Wang, T. Hama, B. Sun, Y.-F. Jia*, X.-C. Zhang*, S.-T. Tu, Revealing the fatigue strengthening and damage mechanisms of surface-nanolaminated gradient structure, International Journal of Plasticity (2024) 104128
[56]Y. Zhang, C. He, Q. Yu, X. Li, X. Wang, Y. Zhang, J. Wang, C. Jiang, Y. Jia, X.-C. Zhang, B. Sun, R.O. Ritchie, S.-T. Tu, Nacre-like surface nanolaminates enhance fatigue resistance of pure titanium, Nature Communications 15(1) (2024) 6917.
[55]Z.-M. Wang, Y.-F. Jia*, J.-D. Cai, Y.-Y. Cui, X. Li, X.-C. Zhang*, S.-T. Tu, Strain-rate and size dependence of gradient lamellar nickel investigated by in-situ micropillar compression, Journal of Materials Research and Technology 32 (2024) 3269-3279.
[54]唐沛, 張勇, 賈云飛*, 李曉, 汪永紀(jì), 雙峰結(jié)構(gòu)純鈦的低周疲勞性能研究:試驗(yàn)和模擬, 機(jī)械工程學(xué)報(bào) 60(12) (2024) 228-239.
[53]Y. Zhang, Y.-F. Jia*, X.-W. Sun, Z.-H. Fang, J.-J. Yan, C.-C. Zhang*, X.-C. Zhang, A model of erosion rate prediction for component with complex geometry based on numerical simulation, Wear 546-547 (2024) 205328.
[52] J. Ji, J. Zheng, L. Jia, Y. Zhang, Y. Jia*, Y. Shi, H. Zhang, Y. Xue*, Low-cycle fatigue behaviour of Mg-9Gd-4Y-2Zn-0.5Zr alloys with different structures, Journal of Magnesium and Alloys 11(9) (2023) 3382-3393.
[51]Xiao Li, Bo Guan, Xiao-Feng Yang, Yong Zhang, Yun-Fei Jia*, Optimizing strength and ductility synergy achieved by multistage strain hardening in gradient recrystallized pure titanium, Materials Characterization 205 (2023) 113333.
[50] Zi-Meng Wang, Yun-Fei Jia*, Kai-Shang Li, Yong Zhang, Jia-Dong Cai, Xian-Cheng Zhang*, Hiroyuki Hirakata, Shan-Tung Tu, Lamellar aspect-ratio and thickness dependent strength-ductility synergy in pure nickel during in-situ micro-tensile loading, Journal of Materials Science & Technology 157 (2023) 89-97.
[49] D.-M. Wang, Y. Zhang, Y.-F. Jia*, X.-C. Zhang*, J.-J. Yan, W.-X. Shu, S.-T. Tu, Application of machine learning in the design and optimization of bimodal structural materials, Computational Materials Science 220 (2023) 112040.
[48]王曉坤, 汪永紀(jì), 賈云飛*, 張勇, 賀琛贇, 董博, 張顯程, 基于機(jī)器學(xué)習(xí)的異構(gòu)金屬材料性能預(yù)測(cè)及結(jié)構(gòu)設(shè)計(jì), 機(jī)械工程材料, 47(05) (2023) 72-83.
[47] F. Song, S. Yao, L. Liu, Y. Chi, Z. Shao, G. Wang, Y. Jia, X. Zhang, S. Tu, Submerged deflecting abrasive waterjet peening for improving the surface integrity and solid particle erosion resistance of Ti-6Al-4V alloy, Surface and Coatings Technology (2023) 129780
[46] X.C. Zhang, Y. Zhang, X. Li, Z.M. Wang, C.Y. He, T.W. Lu, X.K. Wang, Y.F. Jia, S.T. Tu, Design and Manufacture of Heterostructured Metallic Materials, Acta Metallurgica Sinica 58(11) (2022) 1399-1415.
[45] Yong Zhang, Xian-Cheng Zhang*, Yun-Fei Jia* , Dong-Feng Li, Guang-Jian Yuan, Hao Chen, Shan-Tung Tu, High density of interfaces with severely mechanical difference controlled high ductility in heterogeneous materials based on crystal plasticity, Metallurgical and Materials Transactions A, 53 (2022) 3918-3936.
[44] Z. Wang, Y. Jia*, Y. Zhang, P. Tang, X. Zhang*, S. Tu, Achieving High Strength-plasticity of Nanoscale Lamellar Grain Extracted from Gradient Lamellar Nickel, Chinese Journal of Mechanical Engineering 35(1) (2022) 58.
[43] 魏琦, 賈云飛*, 楊曉峰, 李曉, 張顯程, 表面超聲滾壓及滲氧復(fù)合強(qiáng)化對(duì)純鈦斷裂韌性的影響, 壓力容器, 39(5) (2022) 16-25.
[42] X. Shang, N. Wang*, Z. Wang, H. Jiang, Y. Jia*, N. Zhou*, M. Qiu*, Customizable and highly sensitive 3D micro-springs produced by two-photon polymerizations with improved post-treatment processes, Applied Physics Letters 120(17) (2022) 171107.
[41] H.-J. Cheng, X.-C. Zhang*, Y.-F. Jia*, F. Yang, S.-T. Tu, A finite element simulation on fully coupled diffusion, stress and chemical reaction, Mechanics of Materials (2022) 104217.
[40] C.-Y. He, X.-F. Yang, H. Chen, Y. Zhang, G.-J. Yuan, Y.-F. Jia, X.-C. Zhang, Size-dependent deformation mechanisms in copper gradient nano-grained structure: A molecular dynamics simulation, Materials Today Communications 31 (2022) 103198.
[39] Y.-Y. Cui, Y.-F. Jia*, F.-Z. Xuan, Differences in Deformation Behaviors Caused by Microband-Induced Plasticity of [0 0 1]- and [1 1 1]-Oriented Austenite Micro-Pillars, Metals 11(8) (2021) 1179.
[38] 孫銀莎, 賈云飛*, 苑光健, 李曉, 張顯程, 超聲滾壓純鈦梯度材料的力學(xué)性能反演與有限元分析, 機(jī)械工程材料, 45(10) (2021) 58-65.
[37] Yi-Xin Liu, Hao Chen*, Run-Zi Wang, Yun-Fei Jia, Xian-Cheng Zhang*, Yan Cui, Shan-Tung Tu, Fatigue behaviors of 2205 duplex stainless steel with gradient nanostructured surface layer, International Journal of Fatigue 147 (2021) 106170.
[36] X.-F. Teng, Y.-F. Jia*, C.-Y. Gong, C.-C. Zhang, X.-C. Zhang*, S.-T. Tu, Effect of ultrasonic surface deep rolling combined with oxygen boost diffusion treatment on fatigue properties of pure titanium, Scientific Reports 11(1) (2021) 17840.
[35] Peng-Cheng Zhao, Guang-Jian Yuan, Run-Zi Wang, Bo Guan, Yun-Fei Jia*, Xian-Cheng Zhang*, Shan-Tung Tu, Grain-refining and strengthening mechanisms of bulk ultrafine grained CP-Ti processed by L-ECAP and MDF, Journal of Materials Science & Technology 83 (2021) 196-207.
[34] 孫甲鵬, 賈云飛*, 張勇, 韓靜, 吳國(guó)松, 強(qiáng)塑均衡金屬材料精準(zhǔn)設(shè)計(jì)及制備, 機(jī)械工程學(xué)報(bào), 57 (2021) 1-21.
[33] Xiao Li, Bin-Han Sun, Bo Guan, Yun-Fei Jia*, Cong-Yang Gong, Xian-Cheng Zhang*, Shan-Tung Tu, Elucidating the effect of gradient structure on strengthening mechanisms and fatigue behavior of pure titanium, International Journal of Fatigue 146 (2021) 106142.
[32] Y. Zhang, H. Chen, Y.-F. Jia*, D.-F. Li, G.-J. Yuan, X.-C. Zhang*, S.-T. Tu, A modified kinematic hardening model considering hetero-deformation induced hardening for bimodal structure based on crystal plasticity, International Journal of Mechanical Sciences 191 (2021) 106068.
[31] X.-F. Yang, C.-Y. He, G.-J. Yuan, H. Chen*, R.-Z. Wang, Y.-F. Jia, X.-C. Zhang*, S.-T. Tu, The effect of grain boundary structures on crack nucleation in nickel nanolaminated structure: A molecular dynamics study, Computational Materials Science 186 (2021) 110019.
[30] 郭素娟, 史艷茹, 賈云飛, 趙劍, 雙相不銹鋼各組相循環(huán)變形行為的納米壓痕試驗(yàn)和有限元表征方法研究, 機(jī)械工程學(xué)報(bào) 56(22) (2020) 90-100.
[29] Y.-F. Jia, R.-J. Pan, P.-Y. Zhang, Z.-T. Sun, X.-R. Chen, X.-C. Zhang*, X.-J. Wu*, Enhanced surface strengthening of titanium treated by combined surface deep-rolling and oxygen boost diffusion technique, Corrosion Science 157 (2019) 256-267.
[28] Y.-F. Jia, Y.-X. Liu, J. Huang, Y. Fu, X.-C. Zhang*, Y.-C. Xin*, S.-T. Tu, M.-D. Mao, F. Yang*, Fatigue-induced evolution of nanograins and residual stress in the nanostructured surface layer of Ti–6Al–4V, Materials Science and Engineering: A 764 (2019) 138205.
[27] Y.-X. Liu, Y.-F. Jia, X.-C. Zhang, H. Li, R.-Z. Wang, S.-T. Tu, Effect of Ultrasonic Deep Rolling on High-Frequency and Ultrasonic Fatigue Behavior of TC4, Springer International Publishing, Cham, 2019, pp. 311-318.
[26] Y. Li, W. Mao, K. Zhang, Y.-F. Jia, F. Yang, Rate-dependent plastic buckling of a core–shell wire, Journal of Physics D: Applied Physics 52(43) (2019) 435502.
[25] Yu Sun, Yun-Fei Jia*, Muhammad Haroon, Huan-Sheng Lai, Wenchun Jiang, Shan-Tung Tu*. Welding residual stress in HDPE pipes: measurement and numerical simulation, Journal of Pressure Vessel Technology-Transactions of the ASME, 2019, 141(14).
[24] Xumin Zhu, Congyang Gong, Yun-Fei Jia*, Runzi Wang, Chengcheng Zhang, Yao Fu, Shan-Tung Tu, Xian-Cheng Zhang*. Influence of grain size on the small fatigue crack initiation and propagation behaviors of a nickel-based superalloy at 650 °C, Journal of Materials Science & Technology, 2019, 39(8): 1607-1617.
[23] Xiao Li, Bo Guan, Yun-Fei Jia*, Yun-Chang Xin, Cheng-Cheng Zhang, Xian-Cheng Zhang*, Shan-Tung Tu. Microstructural evolution, mechanical properties and thermal stability of gradient structured pure nickel, Acta Metallurgica Sinica (English Letters), 2019, 32(8): 951-960.
[22] Zi-Meng Wang, Yun-Fei Jia*, Xian-Cheng Zhang*, Yao Fu, Cheng-Cheng Zhang, Shan-Tung Tu. Effects of Different Mechanical Surface Enhancement Techniques on Surface Integrity and Fatigue Properties of Ti-6Al-4V: A Review, Critical Reviews in Solid State and Materials Sciences, 2019.
[21] Jie Huang , Kai-Ming Zhang , Yun-Fei Jia , Cheng-Cheng Zhang , Xian-Cheng Zhang *, Xian-Feng Ma*, Shan-Tung Tu. Effect of thermal annealing on the microstructure, mechanical properties and residual stress relaxation of pure titanium after deep rolling treatment, Journal of Materials Science & Technology, 2019, 35: 409-417.
[20] A. Li, Y. Jia, S. Sun, Y. Xu, B.B. Minsky, M.A.C. Stuart, H. C?lfen, R. von Klitzing, X. Guo, Mineral-Enhanced Polyacrylic Acid Hydrogel as an Oyster-Inspired Organic–Inorganic Hybrid Adhesive, ACS Applied Materials & Interfaces, 2018, 10(12): 10471-10479.
[19] Cui Y-Y, Jia Y-F*, Xuan F-Z*. Micro-deformation evolutions of the constituent phases in duplex stainless steel during cyclic nanoindentation. Scientific Reports, 2018, 8(1): 6199.
[18] Jiang Y, Li Y, Jia Y-F, Zhang X-C, Gong J-M. Gradient Elastic–Plastic Properties of Expanded Austenite Layer in 316L Stainless Steel. Acta Metallurgica Sinica (English Letters), 2018, 31(8): 831-841.
[17] Zhao P-C, Li S-X, Jia Y-F*, Zhang C-C, Zhang X-C*, Tu S-T. Very high-cycle fatigue behaviour of Ti-6Al-4V alloy under corrosive environment, Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(4): 881-893.
[16] Liu L-L, Jia Y-F*, Xuan F-Z. Gradient effect in the waved interfacial layer of 304L/533B bimetallic plates induced by explosive welding, Materials Science and Engineering: A, 2017, 704: 493-502.
[15] Jia Y-F, Cui Y-Y, Xuan F-Z*, Yang FQ*. Comparison between single loading-unloading indentation and continuous stiffness indentation, RSC Advances, 2017, 57(7): 35655-35665.
[14] Y.Y. Cui, Y.F. Jia, F.Z. Xuan, A Comparative Study on the Cyclic Behavior of Austenite/Ferrite Phases Characterized by the Nanoindentation, Applied Mechanics and Materials 853 (2017) 137-141.
[13] 李豪賽, 賈云飛*, 軒福貞. 基于柔性布技術(shù)的梯度WC增強(qiáng)的NiCrBSi合金涂層制備及性能研究. 機(jī)械工程材料, 2018, 42(6): 59-64.
[12] 劉麗麗, 賈云飛*, 軒福貞. 304L/533B 復(fù)合鋼板界面幾何參數(shù)對(duì)界面力學(xué)性能影響. 壓力容器, 2017, 34(9): 1-7.
[11] 賴煥生, 范登帥, 賈云飛, 劉康林, 徐書豐, 涂善東, 高密度聚乙烯管在核設(shè)備中應(yīng)用的關(guān)鍵技術(shù)挑戰(zhàn), 壓力容器, 34 (2017) 45-54.
[10] Chen Y-H, Jia Y-F, Yang F, Huang C-C, Lee S*. Boussinesq type solution for a viscoelastic thin film on an elastic substrate, International Journal of Mechanical Sciences, 2016, 117, 79-92.
[9] Jia Y-F, Xuan F-Z, Yang FQ*. Numerical Analysis of Indentation of an Elastic Hemispherical Shell, Journal of Mechanics, 2016, 32, 245-253.
[8] Chen Y-H, Jia Y-F, Yang F, Huang C-C, Lee S*. Boussinesq problem of a Burgers viscoelastic layer on an elastic substrate, Mechanics of Materials, 2015, 87, 27-39.
[7] Jia Y-F, Xuan F-Z*, Yang FQ*. Viscoplastic response of tooth enamel under cyclic microindentation, Materials Science and Engineering: C, 2015, 55, 448-456.
[6] Jia Y-F, Xuan F-Z*, Chen XP, Yang FQ*. Finite element analysis of cyclic indentation of bi-layer enamel, Journal of Physics D: Applied Physics, 2014, 47, 175401.
[5] Jia Y-F, Xuan F-Z*, Yang F*. Finite element analysis of depth effect on measuring elastic modulus of a core-shell structure for application of instrumented indentation in tooth enamel, Materials Science and Engineering: C, 2014, 37, 84-89.
[4] Jia Y-F, Xuan F-Z*, Yang F*. Analysis of the effect of a compliant layer on indentation of an elastic material, Journal of the Mechanical Behavior of Biomedical Materials, 2013, 25, 33-40.
[3] Jia Y-F, Xuan F-Z*, Tu S-T. A modified analysis for thermal–mechanical properties of staggered structure in biomimetic materials, Journal of the Mechanical Behavior of Biomedical Materials, 2012, 16, 109-120.
[2] Jia Y-F, Xuan F-Z*. Anisotropic fatigue behavior of human enamel characterized by multi-cycling nanoindentation, Journal of the Mechanical Behavior of Biomedical Materials, 2012, 16, 163-168.
[1] Jia Y-F, Xuan F-Z*. Anisotropic wear behavior of human enamel at the rod level in terms of nanoscratching, Wear, 2012, 290, 124-132.